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Abstract 

Clinical decision support systems (CDSS) will play increasing 

role in improving quality of medical care for critically ill 

patients. However, due to limitations in current informatics 

infrastructure, CDSS do not always have complete information 

on state of supporting physiologic monitoring devices, which 

can limit input data available to CDSS. This is especially true 

in use case of mechanical ventilation (MV), where current 

CDSS have no knowledge of critical ventilation settings, such 

as ventilation mode. To enable MV CDSS make accurate 

recommendations related to ventilator mode, we developed a 

highly performant machine learning model that is able to 

perform per-breath classification of five of  most widely used 

ventilation modes in USA with average F1-score of 97.52%. We 

also show how our approach makes methodologic 

improvements over previous work and is highly robust to 

missing data caused by software/sensor error.  
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Introduction 

Mechanical ventilation (MV) is life-saving intervention 

delivered in intensive care unit (ICU) to patients with acute 

respiratory failure. When delivered properly, MV allow injured 

lungs heal while ventilator performs majority of work of 

breathing for patient. When delivered improperly, MV has been 

associated with variety of adverse clinical outcomes including 

patient discomfort, increased sedative dosing, longer ICU 

length of stay, increased chance of ventilator-induced lung 

injury, and lower survival [1,2]. New generation of clinical 

decision support systems (CDSS) promises to reduce chances 

of delivering improper MV by automating aspects of ventilator 

configuration, and providing clinically accurate and relevant 

alerts to providers. However, key detriment to these systems is 

lack of access to configured state of ventilator and therefore 

lack information that may improve efficiency of these CDSS 

[3]. 

One such piece of information that many MV CDSS lack is 

choice of ventilation mode (VM) that determines pattern of 

flow and pressure delivery with each breath (Figure 1 B-D). 

This information is generally unavailable to CDSS due to lack 

of interoperability and information exchange between CDSS 

and ventilator or electronic health record [3]. CDSS knowledge 

of VM is important because changing VMs may be a necessary 

procedure in course of patient care [4]. For example, if CDSS 

determines that patient is breathing asynchronously with 

ventilator, it may be able to make recommendation that 

providers choose a different VM that provides more comfort 

and flexibility in breathing to patients [5-8]. Another example 

would be that CDSS could provide alerts to clinicians if patients 

continually violate safe volumes of air to inhale. This would be 

especially important in cases where patients have acute 

respiratory distress syndrome and need limited tidal volumes 

[9,10]. In this case CDSS could recommend patients be placed 

on VM that limits tidal volumes such as volume-control. 

 

Figure 1- Displays visualizations of ventilator waveform data 

(VWD). Flow measurements represented in blue, and pressure 

in red. A.) Here we display examples of how to extract 

information from VWD. Positive End Expiratory Pressure 

(PEEP) is noted as minimum pressure supplied by ventilator, 

and peak inspiratory pressure (PIP) is maximum pressure 

supplied during inhalation. Inspiratory time (I-time) is amount 

of time patient breathes in. Total amount of air breathed in 

represented in green, and air breathed out shown in teal. B.) 

Shows canonical example of volume control (VC), mode 

patient receives fixed volume of air for each breath. C.) Shows 

example of pressure control (PC). In PC, pressure is fixed 

during inhalation. D.) Example of continuous positive airway 

pressure (CPAP). Here minimal pressure support is given, 

and all breaths initiated by patient. 

If MV CDSS lacks knowledge of VM from more traditional 

methods, it may still be able to access it by utilizing information 

derived from streams of flow and pressure readings that 

comprise ventilator waveform data (VWD). To the best of our 

knowledge, only one previous effort has developed rule-based 

classifier using analysis of VWD for providing hourly VM 

classifications. However, its use of closed dataset, limited 

temporal resolution, and accuracy of model represent potential 

limitations both for research and decision support [3,5]. Having 
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highly granular temporal resolution VM classification results is 
important because in practice providers may change VM 
frequently based on changes in clinical state or patient tolerance 
of VM. These changes may cause specific VM to remain 
constant for as low as minutes of time. To improve upon 
previous work, we note that machine learning (ML) has proven 
capable of accounting for highly variable nature of physiologic 
data such as VWD on temporally granular time scales [11,12]. 
So we created a ML model that could identify different VMs on 
per-breath basis, with freely accessible dataset, using only 
VWD as input.  

In this paper, we detail multiple important considerations for 
modeling ML classifier that can classify VM. First, we discuss 
how we created one of the largest datasets of per-breath labeled 
information, extraction of features from VWD, and 
performance of our resulting ML model that can determine five 
of most widely used ventilation modes in USA [4]. Second, we 
discuss experiments of how well our model performs in 
presence of missing training data. Finally, we discuss 
experimentation we conducted for reducing size of our training 
dataset by nearly 72% while maintaining generalizability of our 
classifier to our testing set. To allow reproducibility of our 
work, our code and dataset are publicly accessible and 
published on GitHub. Thus, we hope that our work will serve 
as catalyst for continuing to improve capabilities and efficiency 
of MV CDSS. 

Methods 

In this study, we used dataset of VWD collected from 103 
subjects (IRB# 647002) within intensive care environments of 
University of California Davis Medical Center (UCDMC) 
consisting of MV flow and pressure measurements sampled at 
50 Hz [13,14]. Ventilation mode was not recorded in course of 
VWD data collection. We then randomly selected 2-4 hour 
epochs of VWD from the 103 subjects. All VWD was stored in 
data files of 2 hours in length, and approximately 2,000 breaths 
were stored per data file. Each breath in these epochs was 
annotated by three expert clinicians (JYA, BTK, JN) for 
presence of one of five VMs: volume control (VC), pressure 
control (PC), pressure support (PS), continuous positive airway 
pressure (CPAP), and proportional assist ventilation (PAV) 
(Table 1). Many patients had 2-4 hour periods selected where 
VM was switched multiple times, other modes such as pressure 
regulated volume control (PRVC), volume support, and airway 
pressure release ventilation (APRV) were found, and annotated 
within these epochs, but were excluded in our final analysis 
because of their rarity of use at UCDMC. 

Table 1-Descriptive statistics for our dataset for each 

ventilator mode analyzed. Also analyzed number of patient 

ventilator asynchrony (PVA), suction, and cough breaths 

found [14]. While these breaths do not represent normal 

breathing, they are typical in clinical practice. 

 Volume 

Control 

Pressure 

Control 

Pressure 

Support CPAP PAV

Patients 23 37 55 28 22 

Total 

Breaths 
61,662 78,635 92,360 14,795 36,303 

PVA 

Breaths 
7,714 4,570 6,924 2,373 7,669 

Suction 

Breaths 
750 136 681 350 373 

Cough 

Breaths 
229 117 178 56 96 

  

Given VWD is so heterogeneous it can be difficult for even 
expert clinicians to make consistent classification of breathing 
patterns [15]. Thus, in performing classification of VM we 
ensured that each breath was dual clinician adjudicated, 
meaning that two clinicians would independently annotate a 
single breath, and if classifications disagreed they would be 
resolved through communication between the two [14]. To 
further account for breathing heterogeneity, we included 
regions containing pathologic patient-ventilator interactions 
such as patient-ventilator asynchrony (PVA), routine clinical 
events such as suctioning and cough, and regions of noisy data 
caused by moisture/blood/mucus in ventilation circuit tubing 
[14]. 

Table 2-Set of proposed features for our model. Features were 

segmented into per-breath and multi-breath time frames.  

Feature  Description 
Inspiratory 
Flow Slope 
Variance (per 
breath) 

This feature measures variance of succes-
sive, 0.08-second long slope measurements 
of inspiratory flow curve of a single 
breath. This feature was effective for clas-
sifying volume control. 

Variance of 
Pressure (per 
breath) 

This feature takes variance of all pressure 
measurements for a single breath. This fea-
ture was helpful for classifying CPAP 
which typically utilizes low pressures rela-
tive to PEEP on inspiration. 

Variance of 
Per-Breath 
Inspiratory 
Flow Slope 
Variance 

The inspiratory flow slope variance was 
found on per breath basis, and this feature 
takes variance of inspiratory flow slope 
variance across a 10 breath window. 

Inspiratory 
Time (I-time) 
Variance (10 
breath win-
dow) 

The amount of time that patient inhales for 
single breath is called I-time. This feature 
calculated variance of 10 successive 
breaths. 

Pressure-
Based I-time 
Variance (10 
breath win-
dow) 

We defined pressure-based I-time as 
amount of time (seconds) that pressure is 
elevated by [0.4 * (PIP - PEEP)] above 
PEEP. This was an important variable to 
measure in pressure control and pressure 
support, where flow-based I-time can be 
shorter than ventilator’s set I-time, which 
may occur in delayed cycling asynchrony. 

N Plateau 
Pressures (20 
breath win-
dow) 

A plateau pressure is taken on ventilator 
when inspiratory flow is set to 0 for a cer-
tain amount of time, during which ventila-
tor can read residual pressure in respiratory 
system. PAV will repetitively take plateau 
pressures in order to adjust ventilation to 
patient’s needs. 

Pressure-
Based I-time 
Variance 
(100 breath 
window) 

In this feature, pressure-based I-time statis-
tic is also calculated for 100-breath win-
dow. This feature was necessary to provide 
capacity for differentiating between pres-
sure control and pressure support in syn-
chronously breathing patients. 

With this dataset, we utilized 55 patients and 140,928 breaths 
for our training cohort, and 48 patients and 165,988 breaths for 
our testing cohort. There was no patient overlap between testing 
and training cohorts. Testing set was chosen to be 
approximately as large as training set because initial modeling  
 

G.B. Rehm et al. / Improving Mechanical Ventilator Clinical Decision Support Systems with a Machine Learning Classifier 319



 

 

yielded strong results, and we wished to utilize large testing set 

as further validation for our approach. Using both Scikit-learn 

and Pytorch ML libraries [16,17], we evaluated use of multiple 

ML algorithms including: support vector machine (SVM) [18], 

multi-layer perceptron (MLP), long-short term memory 

recurrent neural network (LSTM RNN) [19], logistic 

regression, and random forest (RF) classifier [20]. All models 

performed classification on per-breath basis, highest possible 

level of granularity possible in VM classification. Based on 

model investigation, we settled on usage of RF with 

parameterization of 30 classifier trees for our final model (see 

online supplemental). 

Our feature set is composed of 7 items of expert-guided 

information derived from raw VWD, and is described in Table 

2. Our features are derived from both per breath and multi-

breath analytic time frames. Per-breath time frames occur over 

single breath, while multi-breath time frames are composed of 

windows of short, medium, and long periods of breathing. Short 

window is 10 breaths long, medium window 20 breaths, and 

long window 100 breaths. Tuning of features and 

hyperparameters was guided by performing 10-fold cross-

validation of our training data. After tuning model 

hyperparameters during the validation phase, we evaluated our 

model on our testing set. No additional changes to our feature 

set, or model hyperparameters were performed after model 

development was completed in training set. Model performance 

is primarily reported through F1-score because it is more 

representative of class-imbalanced classifier performance than 

accuracy is. F1-score is calculated as harmonic mean of 

precision (PPV) and recall (sensitivity): 

F1-score 
 2
�
������� ∗ 
�����

�
������� � 
�����
 

Limitation to using RF to classify ventilator mode is RF 

classifier assumes that all breaths are independent of each other. 

However, ventilator mode is a continuous setting that does not 

vary over time, unless it is manually changed by provider. 

Therefore, one breath’s mode is often predictive of next 

breath’s mode. This modeling incongruity causes RF classifier 

to sometimes perform incorrect VM classification even in 

periods where classifier correctly predicts correct VM for a 

majority of breaths. To smooth these incorrect predictions, we 

implement an algorithm we term “look-ahead smoothing” 

which operates as second pass heuristic on all per breath RF 

breath predictions. More specifically, once RF is finished, look-

ahead smoothing examines each breath VM classification 

sequentially, and if it determines breath’s classification is not 

in accordance with previous � breaths then it will look ahead at 

next � breaths in sequence. The breath will then be re-classified 

in accordance to majority � percent of subsequent � breaths. 

Both � and � are configurable parameters that we set at � 
 50 

and	� 
 60, parameters which were found via sensitivity 

analysis. In real-time classification, assuming average 

respiratory rate of 20 breaths per minute, this technique results 

in latency of at most 2.5 minutes between a given breath and 

availability of its final classification.  

Finally, we implemented experiment to test how well our 

classifier would generalize to larger dataset if random breaths 

in our training dataset were missing due to some technical error. 

So we conduct experiment where we ablate (i.e. remove) data 

observations at random from our training dataset in equal 

proportion for VC, PC, PS, CPAP, and PAV. We do not 

perform any ablation on the testing set. We then report results 

of this experiment by recording F1-score for each class with 

respect to percentage of dataset that simulated as missing. 

Results 

Using RF model with feature set defined in Table 2, we initially 

performed 10-fold cross validation with our training set to test 

performance of our VM classifier. We found that during cross 

validation our model consistently performed within 98-99% for 

F1-score, recall, and specificity for all VMs. We then evaluated 

our model on withheld test set. CPAP suffered largest drop in 

performance because it confused PS for CPAP for an entire 

patient. VC/PAV suffered no drop in performance and PC/PS 

only suffered slight declines in performance (Table 3).  

Table 3-Performance of our Random Forest model when 

applied to our withheld testing set. 

Mode F1-Score Accuracy Precision Recall Specificity

VC 0.999 1.0 0.998 1.0 1.0 

PC 0.989 0.993 0.983 0.996 0.992 

PS 0.975 0.981 0.993 0.958 0.996 

CPAP 0.85 0.988 0.767 0.952 0.989 

PAV 0.994 0.999 0.99 0.998 0.999 

We hypothesized that since the model performed well on both 

training and testing sets that it would also be robust to scenarios 

in which breath data went missing due to reason of sensor or 

software failure. We report results for this experiment in 

Figure 2. We found model is robust to missing data until 

approximately 90% of data is removed. After this point PC and 

PS F1-score performance begins to decrease and other 

classifications begin to fluctuate. After 99% of data is removed 

our classifications lose clinical utility. 

Figure 2-Here we simulate scenario where percentage of 

training observations is missing due to some kind of 

software/hardware error. 

Given results of random ablation experiment, we hypothesized 

that we may have created too large a training set. To reduce the 

size of our training set in generalizable, non-random way, we 

hypothesized we only needed to keep the first of certain number 

of contiguous breaths from each VM per data file, and still 

maintain performance of our original model. In this respect, we 

could make recommendations to physicians to only annotate 

first �breaths in a series and just leave the rest alone. This 

could also decrease amount of time necessary to annotate VM 

on future patients. So, we performed a sensitivity analysis to 

determine what the optimal number of contiguous observations 

to keep per ventilator mode is. We do this by sequentially 

iterating over each VM in our training set and only picking first 

� breaths in a file while keeping number of observations from 

other VMs constant. Our analysis (Figure 3) showed that it was  
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most optimal to only use first 450 VC observations, first 120 

PC, 1,200 PS, 160 CPAP, and 80 PAV observations in a file. 

Using this methodology, we ablated overall number of training 

observations by 71.41% from 140,928 to 40,285 observations, 

while still maintaining generalizability of our training set to our 

withheld test set, and largely improved CPAP performance 

(Table 4). By performing ablation we were able to boost 

average F1-score of our classifier to 0.9752 from 0.9614 that 

was reported in Table 3. 

Figure 3-Results from our sensitivity analysis for choosing 

first N contiguous breaths for a given mode in a data file. 

Table 4-Final results of our ablation experiment where we 

only keep first 450 VC, 120 PC, 1,200 PS, 160 CPAP, and 80 

PAV observations in a data file. We note final number of 

training observations that we kept, and report how much of 

reduction that was in contrast to original training set. 

Performance improvements/degradation over results listed in 

Table 3 are bracketed alongside final performance metrics. 

E.g. performance increase of 2.0% is denoted as (+.02). 

Mode Training Observations F1-Score 

VC 6,079 (-83.65%) 0.998 (-0.001) 

PC 2,154 (-92.77%) 0.964 (-0.025) 

PS 27,892 (-26.81%) 0.967 (-0.008) 

CPAP 3,040 (-73.55%) 0.955 (+0.105) 

PAV 1,120 (-94.46%) 0.993 (-0.001) 

Discussion 

In this paper, we highlighted how we created dataset of 308,957 

breaths annotated for VM on per-breath basis and how we 

developed highly accurate, ML-based VM classification model 

that only utilizes raw VWD to perform classifications. Our VM 

classifier was highly performant in detecting five of most 

widely used VMs in USA, even in presence of signal noise, 

episodes of PVA, and routine clinical events such as cough and 

suction [4]. Using our approach, we were able to achieve 

methodological and performance improvements in VM 

classification compared to current state of art [3]. In this regard, 

Murias reported 89% accuracy at detecting per-hour VM 

classification, and we report average accuracy of 98.05% of 

per-breath VM classification (Table 3). Finally, we examined 

how robust our model is to presence of missing training data, 

and additional experimental results that suggested how we can 

decrease the size of our dataset while still maintaining 

generalizability of our classifier. 

We took multiple measures to ensure we were not overtraining 

our classifier. First, we utilized a relatively large and diverse 

sampling of patients to create both our testing and training sets. 

This created one of the largest available datasets of per-breath 

labeled VWD. Two to four hour epochs were chosen at random 

from each of these patients. Our testing set included almost as 

many patients as our training set, and was composed of more 

breaths than our training set. There was no overlap of patients 

between training and testing sets. Finally, all model features 

and hyperparameters were evaluated on the training set using 

K-fold validation, and were frozen after initial evaluation of our 

testing set. 

Our ablation experiments deserve additional consideration. 

Results of the random ablation experiments highlight multiple 

things: 1) RF is extremely performant with our featurization 

approach, and is also able to perform VM classification with 

small amounts of data. 2) Our ablation results also illustrate that 

it may not be necessary to create very large training datasets of 

information to create performant ML classifiers for VM. 3) Our 

size reduction experiments did see some decreases in 

performance in PC and PS because of the manner in which we 

performed our sensitivity analysis. In our analysis we only 

modified observations from a single VM type while keeping 

other VM observations constant, so it was not possible to 

determine side effects from simultaneously ablating several 

modes at once. Future experiments could perform more 

computationally demanding task of ablating multiple modes at 

once to further explore the issue. 4) Our size reduction 

experiment showed that first 160 breaths seem to be most 

representative of CPAP breathing patterns. We hypothesize this 

can be explained by the fact that some patients tire quickly 

when on CPAP, and thus their breathing can become more 

irregular. In this case, later breaths in CPAP sequences may 

more closely resemble asynchronous breathing from other 

ventilator modes instead of CPAP. 

This work had several limitations. Our use of “look-ahead 

smoothing” introduced small latency of 2.5 minutes to real-time 

ventilator mode predictions. This time delay in classification 

would not likely be of clinical consequence since CDSS 

recommendations requiring VM state information would rarely 

be executed over such short time frames to ensure that transient 

changes in waveforms do not trigger frequent false alarms. If 

latency is not desired then “look-behind smoothing” can be 

used as alternative approach. Our study was also confined to a 

single academic medical center and single ventilator type. 

There are also additional ventilator modes such as PRVC that 

we were unable to add to our model due to their paucity of use 

at UCDMC. We welcome additional collaboration and 

inclusion of multi-center data and have publicly released our 

code and dataset.   

Conclusions 

In conclusion, we created a highly-performant ML classifier for 

detecting five of most commonly used ventilator modes in 

USA, using only raw VWD as input. Our use case further 

demonstrates utility of ML analysis of physiologic waveform 

data to improve CDSS characterization of patient state when 

state is missing due to limitations of available informatics 

infrastructure. We also illustrated usage of dataset ablation to 

characterize how missing data affects generalization 

performance of our classifier, and how we can restrict size of 

our training set while maintaining model generalization to our 

test dataset. Our classifier will facilitate development of more 

advanced automated MV CDSS to improve management of 

patients experiencing respiratory failure.  
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