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Abstract

Future healthcare systems will rely heavily on clinical decision support systems (CDSS) to 

improve the decision-making processes of clinicians. To explore the design of future CDSS, we 

developed a research-focused CDSS for the management of patients in the intensive care unit that 

leverages Internet of Things (IoT) devices capable of collecting streaming physiologic data from 

ventilators and other medical devices. We then created machine learning (ML) models that could 

analyze the collected physiologic data to determine if the ventilator was delivering potentially 

harmful therapy and if a deadly respiratory condition, acute respiratory distress syndrome 

(ARDS), was present. We also present work to aggregate these models into a mobile application 

that can provide responsive, real-time alerts of changes in ventilation to providers. As illustrated in 

the recent COVID-19 pandemic, being able to accurately predict ARDS in newly infected patients 

can assist in prioritizing care. We show that CDSS may be used to analyze physiologic data for 

clinical event recognition and automated diagnosis, and we also highlight future research avenues 

for hospital CDSS.

Introduction

Clinical decision support systems (CDSS) are computer systems designed to digest large 

amounts of patient-generated data, and detect complications of care and other adverse 

healthcare consequences. When used properly, CDSS can improve quality of care by 

warning of harmful drug interactions, improve physician diagnoses, and reduce costs of care 

[1]. These benefits have prompted large amounts of research into the design and 

development of future CDSS in a variety of healthcare environments.

One of the places CDSS will have a large impact is in the treatment of critically ill patients 

in the intensive care unit (ICU). Patients in the ICU can have multiple, complex ailments and 

must be continuously monitored by clinicians and multiple life support machines. The 

mechanical ventilator is one such machine integral to the care of patients with respiratory 

failure. When utilized properly, ventilators act to reduce effort required for breathing and 
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allow a patient’s lungs to heal. When used improperly, ventilators can cause harm due to 

poorly configured settings or delivery of support inappropriate for a patient’s diagnosis. 

These issues can have adverse effects that include longer hospital stays, increased sedation 

requirements, lung injury, and even death [2], [3].

One way patients can receive ventilator-induced lung injury is from a phenomena called 

patient-ventilator asynchrony (PVA). PVA occurs when ventilator configuration is 

misaligned with patient demands for respiration. PVA has been linked to increased work of 

breathing, patient discomfort, and in a small study, increased mortality [3]. Clinicians can 

detect PVAs during bedside examination, but PVA detection can be delayed due to lack of 

24/7 access to appropriately trained clinicians. PVA detection can be performed with 

electronic algorithms, but most algorithms rely only on expert rules that may not generalize 

to broader patient populations seen in the ICU.

Patients can also be harmed by misdiagnosis of underlying lung injury. One commonly 

misdiagnosed condition is acute respiratory distress syndrome (ARDS), which is a severe 

form of respiratory failure that has a mortality rate of 35–46% [4]. However, ARDS still 

remains under-recognized because diagnostic criteria can be subjective and the physiologic 

manifestation of ARDS can vary by patient. Research has attempted to automate ARDS 

diagnoses via expert-derived rules, but these efforts have been limited in accuracy and 

generalizability by their reliance on subjective criteria and local practice patterns [5]. ARDS 

is often a serious complication of various underlying conditions, including sepsis, 

pneumonia, and respiratory illness such as the COVID-19. The mortality rate of infected 

COVID-19 patients who developed ARDS is 50% [6]. In the presence of a pandemic such as 

COVID-19 that puts unprecedented strain on health-care systems, early ARDS detection can 

help prioritize care delivery.

In this article, we investigated ways to create more performant analytics to detect ARDS and 

PVA by utilizing machine learning (ML). ML has been used to create data driven predictive 

models that have shown to be generalizable for predicting outcomes in major health systems 

across diverse patient populations [7]–[10]. By leveraging ML and physiologic data 

collected in the ICU we make the following contributions to the literature: 1) We created an 

integrated software and hardware platform that leverages IoT devices to transmit and store 

physiologic data from the ventilator and other machines performing physiologic monitoring 

in the ICU [11]. 2) We developed a ML classifier to detect PVA in the ICU. 3) We developed 

a data-driven, ML-based diagnostic system for performing real-time disease detection of 

ARDS in the ICU. 4) We designed a mobile application that enables physicians to track real-

time breathing information for their patients and provides alerts for ARDS disease screening 

and ventilator asynchronies. Our platform (Figure 1) serves as an example of next-

generation CDSS that will enable pervasive and intelligent monitoring of patients in the 

ICU, early detection of disease, timely intervention, and improved care of ventilated 

patients.
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System Architecture

We developed our data collection architecture to be capable of supporting large, multi-

center, clinical studies of patient-ventilator interactions, and IoT based multi-sensor, multi-

patient monitoring. Our system requirements include: 1) continuous and automated data 

collection from multiple concurrently operating mechanical ventilators; 2) unobtrusive, non-

disruptive operation so as not to influence patient care; 3) ability to maintain temporally 

accurate data and preserve correct data linkage between patient and collected ventilator 

waveform data (VWD); 4) ease of use of the data acquisition hardware by non-technical 

users. 5) database archival storage; and 6) ability to generate alerts to and receive feedback 

from doctors to improve mechanical ventilator management.

To accomplish these goals, we used a small, unobtrusive IoT device that acts as an 

information aggregator by collecting data from mechanical ventilators and other sensors or 

medical devices. For our prototype architecture, we chose to use the Raspberry Pi™ (RPi) 

microcomputer, a small Linux-based computer that, with customized software, can be 

attached to a ventilator to collect and stream VWD to a server through a wireless access 

point. Once collected, VWD is attributed to a specific patient by having physicians link 

VWD files to a specific patient via mobile application. The linkage process is performed 

without use of private patient information by referencing the patient via an anonymized 

token. Linkage of tokens to protected health information extracted from the electronic health 

record (EHR) is ensured with use of a secure encrypted file. To ensure temporally accurate 

linkage of collected VWD to EHR data we required the RPi’s to connect to the hospital’s 

Network Time Protocol (NTP) servers before commencing data collection, followed by time 

stamping of VWD files.

Our data attribution and time alignment protocol can be extended to collect other types of 

medical device data. In a pilot study, we have extended our RPi-based architecture to acquire 

patient blood oxygenation (SpO2) data from wireless pulse oximeters, allowing synchronous 

acquisition and aggregation of both VWD and SpO2 data. Other device data can be 

incorporated for aggregation as well, provided they can communicate with the RPi over 

Bluetooth, WiFi, or wired cable.

Once device data are collected, it is forwarded to a database for storage. Analytic algorithms 

can then be applied to the data for anomaly detection and diagnostic purposes, with analytic 

outputs subsequently accessed retrospectively for research or in near real-time for decision 

support.

As a result of our work we have been able to collect one of the largest collections of breath-

level VWD reported to date having collected 467 patients, and 47,990,952 recorded breaths 

for use in developing clinically validated analytic algorithms to support CDS system 

development [10].

Detection of Patient Ventilator Asynchrony

There are currently no intelligent/automated systems integrated into mechanical ventilators 

capable of detecting PVAs and generating alerts to clinicians. Current systems consist of 
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simple threshold-based alarms that are prone to frequent false positive alerts, which cause 

clinicians to ignore them. The only reliable way to detect PVA is via bedside examination of 

patients, but this is can only occur during scheduled clinician visits, and even then, studies 

have shown that even trained clinicians often fail to consistently recognize PVA [12].

To improve the speed and accuracy of PVA detection, we aimed to create a system that could 

compute upon VWD and automatically classify a breath as normal or PVA (Figure 2). To 

automatically distinguish different types of breathing, PVA detection algorithms must have 

the ability to extract quantitative features from breaths instead of relying on visually 

subjective breath characteristics. The analytic systems should be capable of handling data 

heterogeneity and be effective in categorizing information from any patient [13]. We also 

sought to identify breaths that were potentially confounding to our PVA recognition system 

such as clinical artifact caused by routine aspects of care or transient waveform 

abnormalities.

From our repository of collected data, we extracted VWD from 35 patients who received 

ventilation at the University of California Davis Medical Center (UCDMC). For each 

patient, we selected a period of approximately 300 breaths where PVA was highly prevalent. 

Two ICU physicians independently annotated 9,719 individual breaths to achieve a ground 

truth labeled data set. Classification was performed via a combination of clinically guided 

heuristic rules and visual inspection, and each breath was labeled as one of 4 categories: 

normal, artifact, double trigger asynchrony (DTA), or breath stacking asynchrony (BSA). We 

targeted DTA and BSA because they are two of the most common forms of PVA and are 

thought to contribute to ventilator induced lung injury. Artifact breaths like suction and 

cough were identified and included in the dataset because they share characteristics with 

common forms of PVA that can result in false-positive PVA classification. All artifact and 

normal breaths were then included together and labeled as non-PVA. Any disagreements in 

breath classification were reconciled between the reviewing clinicians, and a consensus label 

was chosen. Using this process, we created one of the largest dual-adjudicated datasets 

devoted to PVA detection reported to date. In total our dataset contains 1,928 BSA breaths, 

752 DTA breaths, and 7,039 non-PVA breaths.

After completing breath-level annotation, we used the ventMAP software suite to extract 

clinically relevant features from VWD [13]. In total, we derived 16 different features from 

each breath (Figure 2A). After features were extracted from VWD, we evaluated multiple 

supervised ML models to perform PVA classification. PVA classification was done on a per-

breath basis where each breath is trained and classified based on a corresponding class label 

of non-PVA, BSA, or DTA. When training our models, we encountered a class imbalance 

issue because the number of PVA breaths were disproportionate to the number of non-PVA 

breaths in our dataset. Imbalanced training sets can be an obstacle to training accurate 

classifiers, resulting in decreased model performance when classifying DTA [8] in our case. 

We explored multiple methods to correct for class imbalance including: random under 

sampling (RUS) and the synthetic minority oversampling technique (SMOTE). We found 

that SMOTE offered the best balance of recall and specificity while RUS offered better 

recall than SMOTE at the cost of decreased specificity. In our experiments, we found that 

our models performed best when we used SMOTE to create a 1:1:1 ratio of non-PVA, DTA, 
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and BSA observations for our training set. This ratio created the same number of DTA and 

BSA observations while keeping non-PVA observations static.

In our prior work [7], we evaluated 10 ML algorithms: SVM, extreme learning, naïve bayes, 

multi-layer perceptron (MLP), and six tree-based approaches, namely decision trees, extra 

trees classifier, random forest, Adaboost, extremely random trees classifier (ERTC), and 

gradient boosted classifier (GBC). The performance of these algorithms was evaluated 

through k-fold validation, where we left one patient’s data out for testing, and used the rest 

for training. This yielded 35 training and testing folds, corresponding with the number of 

patients in our dataset. The performance metrics of interest are accuracy, recall, and 

specificity. Precision was not reported because its measurement would be biased because we 

focused on specifically selected regions of breath data with high PVA occurrence. Our 

explorations showed that extremely random trees classifier (ERTC), gradient boosted 

classifier (GBC), and multi-layer perceptron (MLP), achieve the best performance, but each 

with its own trade-offs [8]. ERTC achieved better accuracy for DTA class, while GBC and 

MLP performed better for BSA. An ensemble classifier consisting of ERTC, GBC, and MLP 

outperformed all other classifiers in terms of recall (sensitivity) and specificity, and the 

results are summarized in Table 1 (a). The high accuracy of our ensemble classifier was the 

result of numerous optimizations and DTA performance was especially assisted by the use of 

SMOTE. These results suggest that ML-based PVA detection algorithms have potential to be 

translated into clinical practice where they may improve the quality of care for patients 

receiving mechanical ventilation.

Rapid and Accurate ARDS Detection

ARDS is a form of severe respiratory failure that results from lung injury. ARDS is 

commonly caused by infections like pneumonia, sepsis, or trauma, and has been shown to be 

exacerbated by ventilator mismanagement [14]. The diagnosis of ARDS has proven to be a 

major barrier to proper patient management, in part because some ARDS diagnostic criteria 

are recognized subjectively by clinicians (e.g. – chest x-ray findings), while others may be 

delayed by ordering of diagnostic tests [4]. In this regard, it has been reported that 

physicians only diagnosed ARDS in 34% of patients with ARDS on the first day that 

diagnostic criteria were present, and in only 60% of patients with ARDS at any time during 

their ICU stay [4].

Accurate, and prompt diagnosis can be critical for improving an ARDS patient’s chance of 

survival. In a seminal study, it was found that ARDS patients who were treated with low 

volumes of air from ventilators had a significantly higher survival rate than those that 

received physiologically normal amounts of air [14]. However, this and other treatments 

prescribed for ARDS are associated with substantial side effects and discomfort, making 

accurate diagnosis critical to minimizing harms and optimizing chances of recovery.

To improve the process of diagnosing ARDS, we investigated applying ML methods to 

VWD collected in the ICU (as described in our system architecture). We selected 50 patients 

with moderate to severe ARDS and 50 patients with non-ARDS pathophysiology for model 
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training and validation. To reduce classification errors, we required two clinicians to agree 

on each patient’s diagnosis.

For patients diagnosed with ARDS, we extracted the first 24 hours of VWD available after 

ARDS diagnostic criteria were first present in the medical record. For patients without 

ARDS, we used the first 24 hours of VWD collected after patients were placed on a 

ventilator. We focused on processing the first 24 hours of data because our goal was to 

diagnose ARDS at an early enough time point in the syndrome when providing the 

information to clinicians might still change patient outcomes. We then extracted 9 features 

from VWD that were determined by expert clinicians to potentially contain physiologic 

signatures of ARDS. We avoided inclusion of features that might indicate that ARDS had 

already been diagnosed such as low delivered gas volumes or the increased ventilation 

pressures typical of ARDS treatment protocols. To construct individual observations for our 

ML model, we calculated the median value of these 9 features for sequences of 400 

consecutive breath windows. Utilizing these long window lengths helped to minimize the 

impact of breath to breath variability.

We performed supervised ML by associating each window with the pathophysiology of its 

patient. We used supervised learning to train a Random Forest classifier that could classify 

individual windows as either ARDS or non-ARDS (Figure 3A). In testing, we performed 

patient-level classifications by aggregating all window predictions present in the 24-hour 

time period. The most commonly represented physiology was then predicted for each patient 

by a majority vote (Figure 3B).

For our ARDS classifier, all training and testing of our model was performed using 5-fold 

cross validation with a Random Forest classifier. Our results for this preliminary series of 

experiments, accepted for abstract presentation at the 2019 International Conference of the 

American Thoracic Society, suggest that ARDS can be detected with performance superior 

to that reported by ICU physicians [15]. Table 1(b) shows that our ARDS Random Forest 

classifier identified ARDS patients with a recall of 88%, specificity of 92%, precision of 

91%, and AUC of 0.88.

While our work on a patient level ARDS classifier is in ongoing development, it 

demonstrates proof of concept that learning algorithms can detect discrete disease signatures 

from physiologic monitoring data that may be integrated into future clinical decision support 

systems.

Mobile Applications for Ventilator Waveform Data

There are two major limitations of existing mechanical ventilators that present barriers to 

effective patient monitoring and limit the adoption of ventilation-focused CDSS. First, state 

of the art ventilator alarms uses simple, threshold-based rules (e.g. – alarm for any breath 

with volume over ‘x’) that lack flexibility in terms of customization, and sophistication with 

regard to analytics. Second, alarm settings cannot be configured remotely and, in most 

hospitals, alerts cannot be viewed using mobile devices. Clinicians must therefore be in a 

patient’s room to directly observe how a patient is breathing, and are forced to abandon 
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monitoring when called away [16]. Even when physicians are bedside, limited alarm 

sophistication and configurability can cause frequent false alerts, resulting in overly wide 

alarm thresholds that can cause long periods of asynchronous breathing and deterioration in 

a patient’s physiologic state to go unnoticed. These problems highlight the need for mobile 

device-based CDSS to improve the monitoring and management of patients requiring 

mechanical ventilation.

To address these problems, we have developed an iOS application and associated 

architecture to enable research and development of real-time monitoring and CDSS for 

VWD. Several core application features were designed to address existing deficiencies in 

ventilation monitoring, to enable innovations in decision support algorithm development, 

and to integrate into real-world clinical practice workflows. First, we allow clinicians to 

remotely view a patient’s waveform data in near real time, in order to provide on-demand 

snapshots of overall clinical trends in ventilation (Figure 4A). Second, real time processing 

of VWD by our computing architecture and ventMAP software package [12] enables remote 

alerting of clinicians to the presence of ventilator asynchrony and other forms of off-target 

ventilation. Breaths that are determined to be asynchronous are labeled on the screen, 

enabling clinicians to get an overview of asynchrony trends and their duration. The 

application also includes the ability to compute breathing statistics over variable, clinician-

configurable periods of time (Figure 4B, 4C). The application’s flexibility in this regard both 

enables clinicians to validate that prescribed treatment protocols are being implemented 

properly and allows greater sophistication in alarm logic including use of event class, 

severity, frequency, and proportion over configurable periods of time.

We utilized Apple™ push notifications to directly alert clinicians to ventilation problems. 

Alert settings are configurable on the mobile application, allowing clinicians to set separate 

alert configuration for each patient. This allows each clinician to receive alerts that are 

relevant to his or her practice and each patient’s physiology. In addition to more traditional 

alert parameters such as respiratory rate and tidal volume, we enable alerts for the 

occurrence of asynchronies such as DTA and BSA that are derived from our ML models [8], 

and we employ artifact recognition algorithms to reduce false positive event detection [13]. 

All these alerts have provider-configurable boundaries and adjustable rolling time windows 

that can be modified on the device rather than the ventilator and turned on and off as a 

patient’s condition evolves. This ability may prove useful to individualize alert logic and to 

reduce the occurrence of clinically irrelevant and false alarms.

To address the limited availability of ground truth data sets for ML algorithm development, 

the application was also designed to include a real time breath annotation mechanism. In the 

case of an uncertain prediction probability, the application can query the clinician to classify 

the ambiguous breaths (Figure 5). In doing so, the application enables the accumulation of 

labeled data to improve the alert system’s accuracy and usability.

Finally, we built a prototype of the ML-driven ventilation management and alert system 

using a client-server model with modest cloud computing resources (2 CPUs, 4G memory, 

Ubuntu 14.04) on Amazon Web Services. Our goal was to investigate the performance of 

our system when implemented using real-time data processing in a cloud computing 
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framework. We benchmarked the server-side processing delays to complete the following 

three key operations while simulating 1, 10, and 20 simultaneous patients (20 represents a 

typical full ICU patent load):

• Micro-batch processing: Time taken to process and store new incoming data (20-

breath batch), perform feature extraction, and PVA detection.

• Data Retrieval: Time taken to retrieve 5 minutes of data (ventilator data, breath 

meta data, and PVAs) from an iPhone application (5 minutes was the default 

polling interval)

• Alert Processing: Time taken to digest classification results for all patients and 

generate alerts

For each task, we repeated the experiments 20 times to ensure statistical validity. We found 

our system was able to perform PVA detection in 1.047 seconds and perform data retrieval 

and all alert processing in 0.125, and 0.107 seconds on average for 10 patients (Table 2). In 

general, data retrieval and alert processing time were negligible (sub-seconds) over different 

loads. Even at full ICU load (20 patients), the average micro-batch processing time was less 

than 2 seconds and less than 4 second 90% of the time. Given that most breaths on a 

ventilator last 2–3 seconds, we conclude that our system is capable of real time data 

processing.

Nevertheless, our prototype cannot guarantee better than worst case performance (9.512 

seconds for 20 patients) due to the lack of dedicated resources. Variations in the processing 

delay were due to competing background workloads on the same server. This demonstrates 

the potential implications of using cloud platform for real-time data analytics in an 

intelligent CDSS system. Future research is needed to further explore the advantages and 

disadvantages of dedicated edge computing platforms on premise versus cloud platforms, 

especially for future application scenarios where the data-driven analytics may be part of a 

closed loop systems controlling fluids and medication administration, ventilators, or other 

medical devices where low computation time variance and sub-second latency will be 

critical.

Bedside to Cloud and Back

Future improvements in healthcare delivery and patient outcomes will depend heavily on the 

development of effective CDSS, which will in turn depend on clinical studies testing CDSS 

effectiveness. Such studies will evaluate potential improvements in care gained from rapidly 

alerting physicians to events such as PVA or diagnoses like ARDS. These trials will be a key 

part of future learning healthcare systems that will design, test, and implement automated 

CDSS, where data will be continuously streamed from the bedside, analyzed in the cloud, 

and returned to clinicians at the point of care in the form of actionable diagnostic and 

predictive alerts. In this regard, we envision a future where CDSS are designed specifically 

around IoT sensors, cloud computing and EHR integration, and mobile device-based access 

to CDSS feedback in a “provider-in-the-loop” implementation framework where inaccurate 

decisions made by ML algorithms can be corrected by clinicians to continuously refine 

algorithm performance over time.
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There are several potential limitations to our current approach. First, this work has been 

performed at a single center and limited to a single data type. Second, for disease diagnosis 

we have yet to include additional data types from sources such as the EHR in our diagnostic 

algorithms, which may present substantial systems integration and informatics challenges 

across the highly heterogeneous healthcare technology landscape. Future CDSS research and 

development frameworks will be needed before additional clinical data can be used to 

develop real-time diagnostic and predictive CDSS. Finally, our current prototype is able to 

accommodate a small-medium size hospital with 10–20 ICU patients. Future work will 

incorporate software optimizations to handle scalability issues to cope with larger cohorts of 

patients.

Conclusion

In conclusion, we have developed an automated platform for collecting, monitoring, and 

performing diagnosis on physiologic data collected in the ICU. Our work fits broadly within 

emerging efforts in critical care medicine to improve the timeliness and quality of care 

through technology-enabled healthcare delivery. CDSS that integrate IoT-based patient 

monitoring devices, analytics operating on real-time physiologic data, and ML algorithms 

stand to improve diagnosis, prognostication, and adverse event recognition in the ICU. 

Through ongoing multi-disciplinary research and development, advanced CDSS will reduce 

the cognitive burden on care providers, improve quality of care, reduce patient suffering, and 

realize greater value in care delivery.
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Figure 1: 
1. Raspberry Pi microcomputers collect data from the mechanical ventilator. 2. A doctor 

performs linkage of a patient to a Raspberry Pi. 3. Ventilator waveform data (VWD) is 

stored in a database with proper patient attribution. 4. VWD is processed by analytic 

modules aimed at diagnostic aid and detection of abnormalities. 5. Alerts are sent to 

clinicians to review and take appropriate actions to improve patient care.
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Figure 2: 
A. displays a normal breath and how information can be extracted from breaths in general. 

We define volume inhaled (TVi) as the amount of air breathed in on a breath. Tidal volume 

exhaled (TVe) is the amount of air exhaled. Positive end expiratory pressure (PEEP) is the 

minimum pressure setting for a ventilator. B. shows a series of breaths that occur due to a 

suctioning procedure. C. shows a breath stacking event, where a patient breathes in 

significantly more air than they exhale. D. shows a double trigger, which is two breaths that 

occur in rapid succession.
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Figure 3: 
A. Raw waveform data from each 400-breath “read” length is extracted from the ventilator 

and then attributed as either belonging to an ARDS patient or a non-ARDS patient based on 

dual clinician diagnosis. These data are then sent to a Random Forest classifier for training. 

B. Test subjects are then evaluated with the trained classifier. A final diagnosis is performed 

by the classifier by evaluating which diagnosis received a majority of votes across all reads 

evaluated by the model in a given period of analysis.
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Figure 4: 
A. Mobile application displaying waveform data of one patient, with breaths labeled with 

detected asynchronies and excessive tidal volumes. The area below the chart contains 

statistics of breaths currently being displayed. Pinch-zoom functionality allows custom 

selection of time frames for waveform display, summary statistics, and event labeling. B. 

Discrete look back time frames over which breath statistics can be calculated. These options 

are selected via left swipe from the screen displaying patient waveform information. C. 

Example result of breath statistics calculated for a 5-minute time frame. Both clinically 

relevant metadata and PVA statistics are shown.
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Figure 5: 
A. Breaths that were classified ambiguously by the machine learning classifier are displayed 

to clinicians for clarification. B. After selecting a breath, clinicians are presented with 

relevant breath-level statistics to assist with classification, and a configurable list of breath 

classes to select.
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Table 1:

Summary of detection results for (a): per-breath detection of non-PVA, DTA, and BSA using ensemble 

classifier; (b): patient-level predictions of our Random Forest ARDS classifier model. Predictions are made 

from a majority vote using the number of windows classified as either non-ARDS/ARDS within the first 24 

hours of a patient’s ventilation data.

Type Recall Specificity Accuracy

Non-PVA 0.9674 0.9806 0.971

DTA 0.9601 0.9754 0.9742

BSA 0.9445 0.9879 0.9793

(a) Per-breath multi-class classification

Type Recall Specificity Precision AUC

non-ARDS 0.92 0.88 0.85 N/A

ARDS 0.88 0.92 0.91 0.88

(b) Per-patient binary classification
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Table 2:

A summary of the server-side processing delays for three tasks: Micro-Batch Processing, Data Retrieval, and 

Alert Processing under different patient loads. The mean, standard deviation, 90th percentile, and maximum 

delays are reported in seconds, rounding to 3 decimal places.

N Task Mean (s) Std (s) 90% (s) Max (s)

1 Micro-Batch Processing 0.329 0.059 0.329 0.973

Data Retrieval 0.098 0.031 0.118 0.122

Alert Processing 0.002 0.000 0.002 0.003

10 Micro-Batch Processing 1.047 0.641 1.789 4.075

Data Retrieval 0.125 0.145 0.311 0.559

Alert Processing 0.107 0.079 0.209 0.274

20 Micro- Batch Processing 1.942 1.347 3.457 9.512

Data Retrieval 0.272 0.220 0.346 2.045

Alert Processing 0.357 0.283 0.681 0.914
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