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Development and Validation of a 
Multi-Algorithm Analytic Platform 
to Detect Off-Target Mechanical 
Ventilation
Jason Y. Adams  1, Monica K. Lieng2, Brooks T. Kuhn1, Greg B. Rehm3, Edward C. Guo3, 
Sandra L. Taylor4, Jean-Pierre Delplanque5 & Nicholas R. Anderson6

Healthcare-specific analytic software is needed to process the large volumes of streaming physiologic 
waveform data increasingly available from life support devices such as mechanical ventilators. 
Detection of clinically relevant events from these data streams will advance understanding of critical 
illness, enable real-time clinical decision support, and improve both clinical outcomes and patient 
experience. We used mechanical ventilation waveform data (VWD) as a use case to address broader 
issues of data access and analysis including discrimination between true events and waveform 
artifacts. We developed an open source data acquisition platform to acquire VWD, and a modular, 
multi-algorithm analytic platform (ventMAP) to enable automated detection of off-target ventilation 
(OTV) delivery in critically-ill patients. We tested the hypothesis that use of artifact correction logic 
would improve the specificity of clinical event detection without compromising sensitivity. We showed 
that ventMAP could accurately detect harmful forms of OTV including excessive tidal volumes and 
common forms of patient-ventilator asynchrony, and that artifact correction significantly improved 
the specificity of event detection without decreasing sensitivity. Our multi-disciplinary approach 
has enabled automated analysis of high-volume streaming patient waveform data for clinical and 
translational research, and will advance the study and management of critically ill patients requiring 
mechanical ventilation.

Acute respiratory failure is the most common reason for intensive care unit (ICU) admission in the U.S. and 
is associated with an average in-hospital mortality of approximately 30% and $54 billion in attributable yearly 
costs1,2. Mechanical ventilation (MV) provides life-saving therapy but if delivered improperly can cause 
ventilator-induced lung injury (VILI)3, and substantial patient distress if patient effort and MV support are not 
well-matched (known as patient-ventilator asynchrony (PVA)), that may further promote lung injury4,5. One of 
the principle mechanisms of VILI is known as volutrauma, whereby delivery of excessive tidal volumes (TV, the 
volume delivered by the ventilator with each breath) results in pathologic alveolar distention, cellular injury, and 
the development of diffuse lung injury with many of the pathologic and clinical hallmarks of the acute respiratory 
distress syndrome (ARDS), a common and severe form of diffuse lung injury associated with mortality of up to 
50%6. Excessive distention of lung tissue may result from inappropriately prescribed ventilator settings, excessive 
patient effort, or from subtypes of PVA that result in incomplete exhalation in between breaths, trapping gas in 
the lungs and further distending tissue3–5,7. Randomized controlled trials in patients with ARDS suggest that 
targeting a low tidal volume ventilation (LTVV) strategy of approximately 6 ml/kg of predicted body weight and 
controlling PVA improve survival although studies to date have not been able to separate the effects of excessive 
TV from those of PVA8,9. Studies in ventilated patients without ARDS suggest that a LTVV strategy reduces the 
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development of respiratory complications and hospital-acquired ARDS10–12. Despite over 15 years of accumu-
lating evidence, the expected widespread translation of lung-protective MV targets into clinical practice has not 
occurred13–15.

Despite its high prevalence, cost, and associated suffering, MV remains difficult to study and no well-validated, 
widely available analytic or clinical decision support tools exist to facilitate patient-specific, precision manage-
ment of MV. Waveform data from MV- and most other life support devices- are not generally available in the 
electronic health record (EHR), limiting the ability to develop analytic tools. MV data from clinical studies have 
typically been hand-recorded only a few times per day, representing a gross under-sampling of patients who 
routinely take more than 20,000 breaths per day8,9,14,16, and most studies have been unable to collect and analyze 
the rich streams of ventilator waveform data (VWD) used by clinicians at the bedside to diagnose and man-
age pathologic patient-ventilator interactions. Manual analysis of large volumes of physiologic waveform data is 
limited by its labor-intensive nature, and recent data suggest that ICU clinicians perform poorly when asked to 
identify common forms of PVA through visual inspection of VWD, further supporting a need for standardized, 
automated analytic tools17.

A number of small studies have collected VWD using intrusive (e.g., laptop computers) or non-scalable 
methods of data acquisition, using a variety of analytic approaches to classifying PVA from manual annotation 
to power spectral analysis to the application of proprietary waveform analysis software18–27. These studies have 
demonstrated an important proof of concept, namely that MV waveform data are rich in historically unrecorded 
information pertinent to patient-ventilator interactions, and that analysis of PVA and other forms of “off target” 
ventilation (OTV) may reveal associations with important clinical outcomes and processes of care. Studies to 
date have been limited by lack of access to ventilator data, intrusive data collection methods that may introduce 
observer bias28,29 and limit the feasibility of continuous longitudinal data collection, limited clinical validation 
of algorithm performance, inability to distinguish between OTV subtypes, and lack of defined analytic mech-
anisms to distinguish between true OTV events and waveform artifacts that may result in false positive event 
classification18–27. As these issues are not unique to MV, the development of improved MV waveform analysis 
software serves as a generalizable use case for the challenges facing the broader development of healthcare “big 
data”-specific analytics and decision support systems including barriers to data access, transmission, standard-
ization, security, storage, and computation; incorporation of clinician-informed knowledge and heuristics into 
algorithms able to transform complex, high-volume raw data into actionable information while minimizing false 
alarms; and the development of well-engineered software solutions that allow extensibility, integration with other 
systems, and ultimately, provisioning of clinical decision support to the point of care30–32.

In this study, we aimed to develop and validate an integrated MV waveform data acquisition and analysis plat-
form capable of unobtrusive, continuous data collection and breath-by-breath classification of OTV to support 
clinical outcomes research, translational patient phenotyping33, continuous quality improvement, and precision 
medicine through clinical decision support. We assembled a multi-disciplinary team including clinicians, engi-
neers, computer scientists, and informaticists, and developed an extensible, modular analytic engine, referred 
to as the ventilator multi-algorithm analytic platform (ventMAP), using rule-based logic derived from clinical 
bedside interpretation of MV waveforms4,5 to determine both inspiratory and expiratory TV, two well-recognized 
forms of PVA associated with hyper-inflation of the lungs, and several common types of VWD “clinical artifacts” 
that morphologically resemble true PVA.

Our work has focused on the classification of events thought to contribute to VILI through excessive disten-
tion of lung tissue including excessive TV (referred to as tidal volume violations (TVV)) and PVA. Two subtypes 
of PVA, referred to here as double-trigger asynchrony (DTA) and breath stacking asynchrony (BSA), cause var-
ying degrees of incomplete exhalation in between breaths resulting in a phenomenon referred to as dynamic 
hyperinflation4,5,7. DTA occurs when a ventilator’s set inspiratory time (I-time) is shorter than a patient’s desired 
“neural I-time”, with ongoing patient inspiratory effort at the termination of inspiratory support resulting in the 
immediate triggering of a second breath without intentional exhalation (Fig. 1a). DTA can result in substantially 
larger than intended TVi delivery despite otherwise optimal selection of ventilator settings3,18,20,27. BSA, like DTA, 
is characterized by incomplete exhalation in between breaths and is common in diseases with expiratory flow 
limitation such as acute exacerbations of asthma or chronic obstructive pulmonary disease (COPD)7. Unlike 
DTA, BSA results from either a ventilator-set or patient-triggered respiratory rate too fast to allow sufficient time 
for complete exhalation in between successive breaths (Fig. 1b and Supplementary Fig. S1). While both DTA 
and BSA result in dynamic hyperinflation, their distinct pathophysiologic mechanisms merit unique methods 
of detection. We thus developed and validated distinct rule-based classification algorithms to calculate inspira-
tory and expiratory TV (TVi and TVe, respectively), both DTA and BSA, and several common clinical artifacts 
(suctioning/auto-triggering of the ventilator, a subset of coughs, and transient disconnection from the ventilator) 
(Supplementary Table S2) that may result in the false-positive classification of artifacts as PVA. We aimed for TV 
accuracy within a pre-specified equivalence threshold of 10% relative to TV measured by the ventilator, and sen-
sitivity and specificity of ≥90% for each PVA detection algorithm both before and after clinical artifact removal.

We hypothesized that the ventMAP engine would be able to measure TV with accuracy equivalent to a com-
mercial ventilator, and that the recognition and algorithmic removal of clinical artifacts (referred to here as “arti-
fact correction”) would significantly improve the specificity of PVA detection without compromising sensitivity. 
We present here the results of our derivation and validation studies.

Results
To address existing limitations on waveform data access, we first developed an inexpensive open source architec-
ture that allows continuous and unobtrusive collection of high-frequency pressure and flow waveform data from 
mechanical ventilators, and then developed an extensible, modular, multi-algorithm analytic software platform 
(ventMAP) grounded in the clinical rules used in bedside MV waveform analysis to automate the quantitative 
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analysis of OTV (Fig. 2). We performed extensive pre-clinical simulation testing of individual component algo-
rithms with further algorithm derivation and final validation using patient-derived data.

Validation of Tidal Volume Measurement. Accurate measurement of TVi and TVe is required for the 
quantitative analysis of off-target TV, and provides essential breath-level metadata used for the algorithmic detec-
tion of both PVA and clinical artifacts (Fig. 1a–f). The Puritan Bennett model 840 (PB840) ventilators (Medtronic 
Corporation) used in our health system are accurate to within 10% of the set TV34, limited by the inherent impre-
cision of the ventilator’s flow sensor. We thus used a mechanical lung (QuickLung, IngMar Medical) to test the 

Figure 1. Examples of waveforms and algorithm development. (a–f) Common subtypes of off-target ventilation 
including patient-ventilator asynchronies and clinical “artifacts”. Vertical axis displays either pressure (red) or 
flow (blue) and horizontal axis displays time. (g,h) Example of ventMAP algorithm development workflow 
and rules engine output including tidal volumes and double trigger. x0, the point at which flow changes from 
inspiration to expiration; TV, tidal volume; TVV, tidal volume violation; TVi, inspiratory tidal volume; TVe, 
expiratory tidal volume; ms, milliseconds.

Figure 2. Schematic depiction of ventMAP’s modular architecture and standardized inputs and outputs.
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accuracy of ventMAP’s TVi and TVe measurement algorithms. Three separate experiments were performed using 
3 different PB840s, testing ventMAP-derived TVi and TVe in a total of 1021 breaths across a range of ventilator 
modes, trigger mechanisms, set TV, and set inspiratory pressures using a pre-specified equivalence threshold of 
+/− 10%. ventMAP-derived TVi and TVe were equivalent to ventilator-derived TV across all measured condi-
tions (Supplementary Table S1). The mean ventMAP-derived TVi and TVe, aggregated across all tested settings 
of both assist control-volume control and assist control-pressure control ventilator modes, were equivalent to the 
TVs recorded by the ventilator’s internal software (Table 1).

Classification of Double-Trigger Asynchrony. Regions of interest containing a mix of DTA, BSA, and 
clinical artifacts from a derivation cohort with 5075 manually annotated breaths from 16 distinct patients were 
used for algorithm derivation. Clinical rules used for bedside DTA recognition were translated into a series of 
logical operations and encoded into the ventMAP rules engine (Fig. 1g,h and Supplementary Table S2), fol-
lowed by iterative feature selection and parameterization to identify events in which a low ratio of TVe:TVi, 
indicating air trapping, was associated with a non-physiologic E-time and low exhaled volume (Supplementary 
Table S2). Algorithm performance was assessed for sensitivity, specificity, and overall accuracy using logistic 
regression to control for potential similarities in waveform characteristics within patients, and differential event 
rates between patients. Algorithm performance was compared to a gold standard classification data set derived 
from multi-clinician manual annotation of the same breaths.

In the derivation cohort, ventMAP achieved a sensitivity, specificity, and overall accuracy of 0.988, 0.965, and 
0.967, respectively, for the classification of DTA. ventMAP performance was then tested without further mod-
ification in a separate validation data set consisting of 4644 manually annotated breaths from 17 mechanically 
ventilated patients. In the validation cohort, ventMAP’s performance decreased somewhat with sensitivity, spec-
ificity, and overall accuracy of 0.940, 0.920, and 0.922, respectively, but remained above our pre-specified goal of 
≥90% for all three measures (Table 2).

Classification of Breath Stacking Asynchrony. BSA classification rules were encoded to identify events 
in which a low ratio of TVe:TVi, indicating air trapping, was associated with a physiologic E-time (Fig. 1b and 
Supplementary Table S2 and Fig. S1). We defined the threshold value for the ratio of TVe:TVi as <90% because 
values ≥90% were too subtle for BSA identification by manual annotation and of questionable reliability given the 
ventilator’s imprecision of TV measurement (+/−10%)34. ventMAP achieved a sensitivity, specificity, and overall 
accuracy of 0.985, 0.984, and 0.984, respectively, in the derivation cohort. In the validation cohort, performance 
declined slightly with sensitivity, specificity, and overall accuracy of 0.967, 0.980, and 0.977, respectively (Table 2).

Reduction in PVA Misclassification with Automated Clinical Artifact Correction. Our early expe-
rience with manual waveform annotation and algorithm development revealed that several VWD artifacts com-
monly observed during routine care shared morphologic similarities to PVAs of interest, resulting in false positive 
classification of PVA and TVV (Fig. 1d–f and Supplementary Figs S3–4). We thus developed algorithms to recog-
nize several classes of clinical artifacts including patient suctioning, a subset of cough-related artifacts, and tran-
sient patient-ventilator disconnect events. The output of these algorithms was then used to drive a higher-order 
heuristic algorithm referred to as “artifact correction”, that transformed any detected PVA also recognized as a 

TVi TVe

% Difference p-value % Difference p-value

AC/VC 3.1% [2.9–3.2] p < 0.0001 5.0% [4.8–5.1] p < 0.0001

AC/PC 5.1% [5.0–5.1] p < 0.0001 5.0% [4.9–5.1] p < 0.0001

Table 1. Difference between ventMAP-calculated and ventilator-recorded tidal volumes in volume control 
and pressure control modes. Differences reported as mean difference, 95% confidence interval, and p-value 
for equivalence test with pre-specified equivalence margin of +/−10% (H0: Ventilator and ventMAP are not 
equivalent). Positive values indicate that ventilator volumes were larger than ventMAP volumes. AC/VC, assist 
control-volume control; AC/PC, assist control-pressure control; TVi, inspiratory tidal volume; TVe, expiratory 
tidal volume.

Event Type

Derivation Data Set (n = 16) Validation Data Set (n = 17)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Double Trigger
0.967 0.988 0.965 0.922 0.94 0.92

[0.962, 0.971] [0.972, 0.996] [0.960, 0.970] [0.914, 0.930] [0.913, 0.960] [0.912, 0.928]

Breath Stacking
0.984 0.985 0.984 0.977 0.967 0.98

[0.980, 0.987] [0.975, 0.992] [0.980, 0.987] [0.973,0.981] [0.955, 0.977] [0.975, 0.985]

Cough, Suction, Vent Disconnect Combined
0.992 0.907 0.995 0.981 0.879 0.989

[0.989, 0.994] [0.859, 0.943] [0.993, 0.997] [0.977, 0.985] [0.841, 0.912] [0.986, 0.992]

Table 2. ventMAP performance metrics in the derivation and validation data sets. Data presented include 
means and [95% confidence limits].
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clinical artifact into the class “not PVA”. After optimization of artifact correction algorithms in our derivation 
cohort (Table 2), we tested ventMAP with and without the use of artifact correction in our validation cohort 
to test the hypothesis that artifact correction would improve the specificity of PVA detection without reducing 
sensitivity.

In our derivation cohort, use of artifact correction resulted in a 2.8% [95% CI 0.9–4.7%; p = 0.006] improve-
ment in DTA classification specificity and a non-significant 0.6% [95% CI −2.0–0.8%; p = 0.361] decrease in 
sensitivity (Table 3 and Supplementary Table S3) whereas artifact correction had no significant effect on BSA 
classification. In the validation cohort, we observed a 7.1% [1.1–13.2%; p = 0.024] improvement in the speci-
ficity of DTA classification and a non-significant 3.0% [−6.3–0.3%; p = 0.067] decrease in sensitivity. Artifact 
correction resulted in a 0.6% [0.2–1.0%; p = 0.009] improvement in the specificity of BSA classification, and a 
non-significant 0.3% [−0.9–0.2%; p = 0.189] decrease in sensitivity (Table 3 and Supplementary Table S3). Most 
notably, we observed a 9-fold reduction in the false-positive detection rate of DTA with the use of artifact correc-
tion resulting in a 44.2% decrease in the total number of detected DTA events from 718 without artifact correc-
tion to 401 breaths with use of artifact correction, with 399 true DTA events in the gold standard data set (Fig. 3 
and Supplementary Table S4).

Integration of Multi-Algorithm Output to Reclassify Tidal Volume Violations. DTA and BSA both 
lead to dynamic hyperinflation that can be quantified by calculating the sum of two successive TVis and sub-
tracting the intervening TVe to yield a “fused” TVi that represents the effective distending volume for the lungs 
(Fig. 1h). Failure to account for the effective distending volume of a fused breath may lead to failure to detect 
associations between TVi and clinical outcomes in research studies, and may lead to volutrauma and worse clin-
ical outcomes if clinically unrecognized and un-remedied3,8,9,26. Conversely, excessive detection of false positive 
OTV may bias research and lead to “alarm fatigue” if implemented in clinical decision support systems35,36. We 
thus developed a heuristic event classification algorithm referred to as “TV-fusion” that uses output from TV cal-
culation, DTA classification, and artifact correction algorithms to fuse the component inspiratory and expiratory 
TVs of DTA breaths and output the effective distending TV of each DTA. We then calculated the mean TVi and 
the distribution of TVV (on-target versus off-target, and the relative severity of off-target breaths) across all DTA 
breaths in the validation cohort, with and without the use of the TV fusion algorithm.

In the validation data set, mean TVi for DTAs was significantly higher when TV-fusion was employed, with a 
mean TVi of 293.3 ml (95% CI, 278.6–308.0) without TV-fusion and 562.2 ml (95% CI, 529.7–594.7; p < 0.0001 
for the difference between means). Clinically, prescribed TV are based on predicted body weight (PBW) derived 
from sex and height, with TVi of ≤6.5 ml/kg of PBW representing the standard of care for patients with severe 
hypoxemic respiratory failure. We used the average height of a U.S. female to normalize all DTA TVs in the 

Derivation Data Set (n = 16) Validation Data Set (n = 17)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Double Trigger

2.60% −0.60% 2.80% 6.20% −3.00% 7.10%

[0.8, 4.3] [−2.0, 0.8] [0.9, 4.7] [1.0, 11.4] [−6.3, 0.3] [1.1, 13.2]

p = 0.007 p = 0.361 p = 0.006 p = 0.021 p = 0.067 p = 0.024

Breath Stacking

0.40% −0.90% 0.60% 0.40% −0.30% 0.60%

[−0.1, 0.8] [−1.7, 0.16] [0, 12.7] [0.03, 0.7] [−0.9, 0.2] [0.2, 1.0]

p = 0.105 p = 0.021 p = 0.047 p = 0.036 p = 0.189 p = 0.009

Table 3. Change in performance of PVA classification algorithms after the application of artifact correction. 
Data are expressed as % change with [95% confidence intervals] and p-value from weighted least squares 
regression. Positive values indicate improved performance with artifact correction.

Figure 3. Artifact correction reduces false-positive event detection. (a) Change in double trigger false-positive 
detection rate with and without artifact correction in the validation data set (n = 4644 breaths). (b) Reduction in 
the number of detected double triggers in the validation data set with and without artifact detection.
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validation cohort before and after TV-fusion. After identifying all potential DTA breaths and removing false 
positives through artifact correction, we stratified off-target breaths with and without TV-fusion as mild, mod-
erate, or severe based on the extent to which a given breath exceeded a target of ≤6.5 ml/kg (Fig. 4a). We found 
significantly more severe TVV amongst fused than unfused breaths (Fig. 4b), with a mean increase in TVV class 
of 1.58 [95% CI: 1.02–2.15, p < 0.0001] per breath.

Discussion
In this study, we examined the accuracy of a novel, modular multi-algorithm analytic platform (ventMAP) 
to detect two main classes of off-target ventilation, namely TVV and PVA. We used customized Raspberry Pi 
microcomputers (Supplementary Fig. S5) to unobtrusively collect high frequency, high volume VWD, and tested 
ventMAP performance in a derivation-validation study design using clinician-annotated gold standard data 
including nearly 10,000 breaths from 33 patients including multiple ventilator modes and acute indications for 
MV. We showed that ventMAP can provide highly accurate breath-level quantitation of both TVi and TVe, highly 
sensitive and specific classification of two clinically relevant subtypes of PVA, and that removal of common clin-
ical VWD artifacts can significantly improve the specificity of PVA detection without compromising sensitivity.

Our findings have several important implications. First, we have demonstrated the potential of inexpensive 
open source computer hardware and software solutions to overcome data access limitations to the use of high 
sampling rate streaming patient monitoring data. Historically, many devices in critical care environments are not 
interfaced with EHRs, or are interfaced to acquire infrequent data snapshots rather than the rich high volume, 
high velocity data streams typical of physiologic monitoring data. Previous studies that have acquired MV wave-
form data in electronic form have required physical connection through a laptop to each ventilator, placement of 
a monitoring device in-line in the MV circuit, or have used proprietary hardware and software limited to a small 
number of ICU beds18–27. These approaches may limit the amount of time and number of subjects that can be 
studied, may introduce observer bias28,37, or may be cost prohibitive in terms of hardware, software, and human 
resources required for data acquisition. In contrast, our data acquisition platform uses commercially available 
hardware costing approximately $75 US dollars per ventilator, occupies minimal space (Supplementary Fig. S5) 
allowing connection out of site on the back of each ventilator, and enables continuous wireless data acquisition 
and transmission over the enterprise network on multiple ventilators throughout the health system without need 
for human intervention after initial connection. At least one other group has developed a similar solution to 
data acquisition from patient monitoring devices using inexpensive open source computing resources38. These 
low-cost, open-source platforms demonstrate proof of concept that multidisciplinary research teams can over-
come the technical and financial barriers to accessing patient-derived physiologic monitoring data for clinical 
and translational research in critical care, thereby democratizing a path to previously difficult to access data types.

Our findings also have important implications for the study of patient-ventilator interactions and the devel-
opment of clinical decision support systems (CDSS) operating on waveform data derived from clinical devices. 

Figure 4. Tidal volume fusion changes the relative distribution of tidal volume violations. (a) Tidal volume 
violation ranges assessed by ventMAP for both fused and unfused breaths. (b) Change in the classification of 
tidal volume violations with the use of tidal volume fusion algorithm in double trigger asynchrony breaths from 
the validation cohort. Blue bars, double trigger component breaths without tidal volume fusion, green bars, with 
tidal volume fusion; TVV, tidal volume violations.
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Several previous studies have applied automated analytic approaches to VWD. Approaches have included the 
use of commercial general purpose waveform analysis software20,25, power spectral analysis23, the development 
of custom rules-based algorithms19,27, and the development of proprietary software packages to analyze multi-
ple subtypes of PVA24,26. While these studies have laid an important foundation for the automated analysis of 
patient-ventilator interactions, limitations remain including the need for detailed clinical validation of algorithm 
accuracy, the need for analytics that can detect multiple discrete types of PVA, and software that can detect rele-
vant waveform artifacts to improve signal-to-noise detection. Our work extends these previous studies in several 
ways.

Using ventMAP’s modular design, we were able to validate separate OTV classification algorithms for the 
related PVA subtypes of DTA and BSA. Previous studies have not attempted to distinguish between these two 
PVA subtypes, either focusing on DTA at the expense of BSA18–20,25,26, or including DTA and BSA in one heu-
ristic algorithm to detect dynamic hyperinflation27. While related, DTA and BSA have important mechanistic 
differences that we felt merited distinct classification strategies. In this regard, DTA has historically been defined 
as resulting from inspiratory effort persisting beyond the end of the ventilator’s programmed inspiratory time, 
resulting in the triggering of another supported breath with little or no exhalation in between breaths4,5,18. In 
contrast, we have taken a nuanced view, defining BSA empirically as incomplete exhalation in between breaths 
(TVe:TVi < 90%) with a longer period (>0.3 sec) of exhalation than observed typically in DTA, representing an 
attempted exhalation in between successive breaths (Fig. 1b and Supplementary Fig. S1). By enabling the distinct 
classification of DTA and BSA, we are able to capture breath stacking events across a wide spectrum of severity, 
detecting DTA events that may result in a doubling of intended TVi, as well as milder BSA events that may not 
meet previous definitions of breath stacking18,26,27 asynchrony, but may still result in substantial dynamic hyperin-
flation over time in patients with expiratory flow limitation such as those with asthma or COPD (Supplementary 
Fig. S1b)4,5,7. This “splitter’s” approach enables analysis of the associations between PVA subtypes and adverse out-
comes across the entire spectrum of dynamic hyperinflation, allows event detection and decision support func-
tionality specific to the distinct pathophysiologic mechanisms of each PVA subtype, and is key to the development 
of systems that will use detailed phenotyping and event detection to enable precision critical care management.

Whereas some previous studies have restricted event detection to dichotomous PVA classification, we devel-
oped ventMAP to enable sub-classification of OTV event severity using breath-level metadata derived from wave-
form processing such as inspiratory and expiratory times and volumes, minimum and maximum pressures or 
flows, etc (Supplementary Table S5). Graded event severity such as the net volume of trapped gas from a DTA or 
BSA event, or the degree of persistent end-expiratory flow in BSA, may allow parsing of the association between 
sub-classes of OTV and clinical outcomes, analogous to the use of gradations of the ratio of PaO2/FiO2 for prog-
nostication and trial enrollment in the acute respiratory distress syndrome6,9,39. Graded OTV detection may allow 
the identification of important thresholds for the dose of OTV and/or OTV-subtypes required to precipitate lung 
injury, hemodynamic compromise, and patient discomfort. The ability to sub-classify OTV may be particularly 
important for the development of CDSS where the ability to refine alarm thresholds based on the type, frequency, 
and severity of OTV rather than its presence or absence alone may allow better matching of decision support to 
individual patient and provider needs. Future studies will need to define the optimal feature sets and parameter 
thresholds for event severity classification in relation to clinical outcomes to better define “clinically relevant” 
subtypes of OTV, a challenge relevant to the generation of knowledge from clinical big data sources in general.

Our work also highlights the potential benefits of artifact correction in the detection of OTV, and in the pro-
cessing of complex patient-derived physiologic monitoring data more broadly. To our knowledge, no prior studies 
have attempted to identify common clinical artifacts in VWD to improve the specificity of OTV detection. Earlier 
studies of automated MV waveform analysis made no attempts to detect or correct for the presence of clinical 
artifacts, potentially limiting estimation of the prevalence of OTV18–27. Recent work by Beitler et al. supports 
the potential value of artifact correction where 4.7% of all recorded MV waveforms were manually removed 
from analysis during clinician review of waveform quality, including artifacts from endotracheal suctioning and 
ventilator disconnect27. Automated artifact correction has been studied elsewhere in critical care where correc-
tion of electrocardiogram chest compression artifact has been used to visualize the underlying cardiac rhythm 
to minimize breaks in chest compressions during cardiopulmonary resuscitation40. These efforts have led to at 
least one commercial product using this approach41, demonstrating the potential to translate such technologies 
to clinical application. Given the impracticality of manual artifact removal in large data sets or in real-time, and a 
relatively low OTV event rate across studies, automated artifact correction may significantly improve association 
studies that attempt to correlate OTV with important care processes or clinical outcomes, and may improve the 
acceptance and utility of CDSS designed to improve clinician responses to potentially dangerous or uncomforta-
ble patient-ventilator interactions.

Finally, our work points to the potential value in the development of modular, extensible healthcare-specific 
analytic software where standardized outputs from individual analytic modules can be used combinatorially to 
recognize increasingly complex clinical events or states, such as with ventMAP’s TV-fusion functionality, while 
preserving computational efficiency and avoiding the introduction of unanticipated software dependencies. 
ventMAP’s modular architecture (Fig. 2) was designed to allow the development and testing of additional OTV 
detection algorithms over time at both the unit- and system-levels, including the potential incorporation of novel 
algorithms from other research groups, to test existing alternative event detection strategies, or validate the per-
formance of novel algorithmic classification methods42. ventMAP’s development also underscores the value of 
working in multi-disciplinary teams of clinicians, informaticists, engineers, and computer scientists to address 
the informatics challenges facing the development and translation of healthcare big data analytics into clinical 
application including data access, transmission, storage, analysis, security, and information delivery30–32.

Our study has several strengths. First, our data acquisition infrastructure enables unobtrusive data collection 
to minimize observer effect28,37, and allows longitudinal and diverse sampling of patients, disease states, modes 
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of MV, and selection of waveform regions of interest that represent a broad spectrum of both OTV and clinical 
artifacts. Our use of blinded multi-clinician waveform annotation to produce consensus gold standard data sets 
allowed for careful algorithm training and subsequent validation on a range of typical and atypical OTV wave-
form morphologies derived from real-world patient data. Similarly, our use of artifact correction enables a clearer 
picture of OTV event rates in heterogeneous waveform samples. Finally, our multi-disciplinary, team-based 
approach to the development of an extensible modular software platform allows uncomplicated incorporation of 
novel PVA and clinical artifact recognition algorithms to further extend ventMAP’s analytic capabilities.

Our study also has a number of limitations. First, our manual selection of ROIs for algorithm training may 
have introduced selection bias. We attempted to mitigate this issue through an extensive manual survey of patient 
waveforms during ROI selection for the derivation data set, and through semi-random ROI selection at very 
low magnification for the validation data set (Supplementary Fig. S6). Second, algorithm development included 
empiric feature selection and parameter thresholding using expert knowledge rather than using statistical or 
machine learning methods, which could have resulted in improved performance or more efficient algorithm 
derivation. Third, we did not compare ventMAP’s performance to previously published approaches18,20,27, since 
previous efforts have not attempted to distinguish between DTA and BSA, and have not attempted to correct for 
clinical artifacts. Nonetheless, it is possible that alternative methods would outperform ventMAP if compared 
directly and future work in the field will need to address alternative methods for the derivation of OTV detection 
algorithms, standardizing the definitions of common types of OTV and clinical artifacts, and the use of stand-
ards for data encoding to enable data sharing and the development of interoperable analytic software packages 
agnostic to ventilator type or data acquisition platform43. Fourth, ventMAP is able to detect some but not all 
of the clinical artifacts that may cause false-positive PVA classification. For example, waveform morphology in 
patients with an endotracheal tube cuff leak or bronchopleural fistula may be very similar to true BSA waveforms 
(in all cases TVe < TVi), such that ventMAP may overestimate BSA prevalence in patients with these conditions. 
Future research will need to model an increasingly diverse set of clinical artifacts, including the development of 
both morphologic and functional classification criteria such as when the detection frequency of a given artifact 
(e.g., BSA) exceeds physiologically plausible conditions (e.g., when the calculated amount of gas trapped in the 
chest from sequential BSA events exceeds predicted total lung capacity). Finally, our study included patients and 
clinician-annotators from a single health system, and future studies should include data from multiple institu-
tions including both academic and community settings to optimize generalizability.

In summary, we have shown that a modular, multi-algorithm software platform (ventMAP) can automate the 
processing of high-volume VWD to detect common forms of OTV including TVV and PVA with high levels of 
sensitivity and specificity. We have also shown that common sources of clinical waveform artifacts can compro-
mise the estimation of OTV frequency and that dedicated algorithms to detect and correct for the presence of 
artifacts can significantly improve the specificity of clinical event detection without compromising sensitivity. 
This work will help to enable future multi-center studies to delineate relationships between the cumulative dose 
and temporal distribution of OTV, and key patient-centered outcomes. Automated analysis of OTV will also 
facilitate the development of real-time clinical decision support systems to detect clinically relevant events not 
captured with existing methods (Supplementary Fig. S7). Future efforts to translate this and related research into 
scalable clinical decision support platforms will ultimately allow the effective use of computational systems in the 
delivery of precision critical care.

Materials and Methods
Data Acquisition. Studies of patient-ventilator interactions have been limited by difficulty in acquiring 
waveform data from mechanical ventilators, variously requiring proprietary software, additional instrumentation 
placed in-line in the ventilator circuit, and/or a direct laptop interface representing large barriers to data access 
in terms of human resources, cost, and potential bias introduced due to the observer effect28,37. To overcome 
these barriers, we developed a low cost, easy to deploy, open-source, and unobtrusive data acquisition platform 
that would allow for continuous VWD acquisition simultaneously from multiple patients anywhere in the hos-
pital. We used Raspberry Pi (RPi) microcomputers running a version of the Linux operating system (Rasbian), 
secured out of sight on the back of Puritan Bennett model 840 (PB840) ventilators (Medtronic Corporation), and 
connected using a serial-USB null modem cable (StarTech, model ICUSB232FTN) attached to a serial port on 
the back of the PB840 screen. We developed custom scripts in the Python programming language to automati-
cally connect to the health system enterprise network, acquire the current date and time, read the PB840’s serial 
port, and write ASCII-encoded pressure, flow, and time data at 50 Hz to disk. Discrete files were written every 
two hours to prevent data loss in the event of device failure, and to facilitate subsequent waveform visualization. 
Additional scripts were developed to automate hourly file back-ups to a networked study server, and an easy to 
use custom web-based application was developed to allow remote server-side file renaming with subject iden-
tifiers once data collection was complete, and to clear old data from RPis by study personnel with no technical 
background. The entire data acquisition platform and workflow was designed to be fully automated once an RPi 
was connected to the PB840 and plugged in.

Algorithm Development and Validation. ventMAP was developed using the Python programming lan-
guage and all described algorithms follow a rule-based framework in which logical rules for processing the data 
from each breath were derived from principles of bedside MV waveform interpretation4,5,7. In general, ventMAP 
processes arrays of pressure, flow, and time data from each recorded breath to derive a series of quantitative 
metadata such as TVi and TVe, inspiratory and expiratory times (I-time and E-time, respectively), peak inspir-
atory pressure, positive end-expiratory pressure (PEEP), and other derived variables (Supplementary Table S5). 
Derived metadata were used as features upon which logical rules were developed, with sets of related rules consti-
tuting an OTV or artifact event detection algorithm. Parameter thresholds for algorithm features were iteratively 
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determined through trial and error using a gold standard derivation data set of known breath types as “ground 
truth”, and an initial classification matrix was populated showing all events detected for each breath. An addi-
tional algorithm was designed to process the initial classification matrix to recognize when a breath had been 
classified as both a clinical artifact and an OTV event, and modify the matrix to remove the OTV event. Similarly, 
another algorithm, referred to as TV-fusion, recognizes when a DTA event is present, and calculates the effective 
TVi by adding the two component TVis and subtracting the intervening small TVe if present (Fig. 1h).

TVi and TVe were calculated by integrating the area under the flow-time curve using Simpson’s method 
(fourth order accurate), from breath start until the first data point where flow has transitioned from positive 
(inspiratory) to negative (expiratory) (Fig. 1g). Experimental data were obtained by ventilating a calibration 
lung (Quicklung, Ingmar Medical) using PB840s in both assist control-volume control (AC/VC) and assist 
control-pressure control (AC/PC) modes, across a range of TVs and inspiratory pressures. Three different venti-
lators were used in separate experiments. Displayed TV were recorded manually from the ventilator user interface 
and compared to ventMAP TV estimates (n = 1021 breaths). ventMAP-derived TV estimates were tested for 
equivalence to PB840-recorded values by calculating the mean % difference between ventMAP and PB840 values, 
using a prespecified equivalence threshold of +/−10%, which was based on the +/−10% margin of error for 
TV calculation reported in the PB840’s technical manual34. T-tests were used for equivalence testing under each 
experimental condition (Supplementary Table S1). In addition to testing each experimental condition separately, 
we combined all VC mode experiments and all PC mode experiments and conducted equivalence testing for each 
mode. Estimates and standard errors were derived from a weighted least squares regression with weights for the 
number of breaths derived from each experiment. For the equivalence tests for the combined PC and VC modes, 
two one-sided t-tests were constructed from the point estimates and standard errors obtained from the weighted 
linear regression.

OTV event detection algorithms were developed for DTA, BSA, in-line suctioning, ventilator disconnect, 
and a subset of coughs (Fig. 1 and Supplementary Table S2). ventMAP algorithm performance was assessed 
for sensitivity, specificity, and overall accuracy compared to gold standard data sets generated from independ-
ent annotation of patient-derived waveforms by two Pulmonary and Critical Care physicians (JYA and BTK). 
Annotations were compared and disagreements were settled by re-review and consensus to arrive at a gold stand-
ard classification for each breath. A limited set of ventMAP-derived metadata including E-time and the ratio of 
TVe/TVi were available to reviewers during annotation to augment visual inspection but both reviewers were 
blinded to all ventMAP classification output. After gold standard generation, a derivation data set containing 
5075 breaths from 16 unique patients was used for algorithm development, with 50–300 breath regions of interest 
selected to represent a broad spectrum of variation in OTV, artifacts, ventilator modes (AC/PC, PC/PC, AC/
volume-targeted pressure control, and pressure support ventilation), and disease states (acute respiratory distress 
syndrome, acute asthma/COPD, and other). Algorithm development proceeded iteratively by logic refinement, 
parameter thresholding, and the incorporation of exception handling rules to account for intra-class variation 
in waveform morphology. Algorithm development proceeded until sensitivity, specificity, and accuracy were all 
>90% in the derivation data set. Once ventMAP code development stopped, final algorithm performance was 
assessed using a validation data set consisting of 4644 breaths from 17 unique patients. To minimize selection 
bias, breath regions of 50–300 breaths were selected for the validation data set by random file selection followed 
by waveform visualization at low magnification to identify regions of heterogeneity indicating the potential pres-
ence of OTV (Supplementary Fig. S6). Regions were examined at intermediate magnification and included in the 
validation data set if the OTV and/or artifact event rate appeared to be over 5%. All patient data were obtained as 
part of a study approved by the institutional review board (IRB) of the University of California at Davis. All meth-
ods were carried out in accordance with the guidelines and policies set forth by the IRB, and informed consent 
was obtained from all participants.

Statistical Analysis. Analysis of algorithm performance in both the derivation and validation cohorts was 
conducted with and without correction for clinical artifacts. Each algorithm’s sensitivity, specificity, and overall 
accuracy were estimated using logistic regression. To account for varying numbers of breaths and events across 
patients (Supplementary Table S6) we used the patient-specific total number of breaths, number of asynchronous 
breaths, and number of non-asynchronous breaths present in the gold standard as weights in the logistic regres-
sion model when modeling overall accuracy, sensitivity and specificity.

Algorithm performance with and without artifact correction was compared by estimating the differences 
in sensitivity, specificity, and accuracy between the two results for each patient and then fitting a weighted least 
squares regression with weights as described above. The only term in the regression was the intercept term, which 
represents the difference in performance between the two classification sets. The model tested whether the inter-
cept differed significantly from zero, accounting for the varying number of breaths and events across subjects. 
Weighted logistic regression was also used to compare differences in estimated TV with and without TV-fusion, 
and the difference in the proportions of TVV classes. For this analysis, TVV were classified as 0, 1, 2, and 3 for no 
violation (0) to severe violation (3), respectively (Fig. 4). To compare TVV violations, the ratings were considered 
integers. For each breath, the difference in ratings between fused and unfused estimates was calculated. These 
differences were then averaged for each patient in the validation cohort and a weighted linear regression with the 
number of breaths per patient as the weights was used to test for a difference between fused and unfused values. 
All results are presented as mean differences with 95% confidence intervals. All hypothesis tests were two-tailed 
and a pre-specified p-value of <0.05 for all comparisons was considered statistically significant. Statistical analy-
ses were conducted using R Statistical Computing Language Version 3.3.1 (R Core Team 2016).

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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